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Inkroduckion

Pulsating aurora 1s among the clearest examples of the high temporal and spatial variability of
particle precipitation into the ionosphere. This work studies the possible contribution of high-
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L I

energy particle precipitation during a pulsating aurora event over Kilpisjarvi KAIRA consists of two arrays:

(L =5.9). It 1s based on the comparison of optical data and cosmic noise absorption (CNA) data.
The optical data consists of all-sky camera images of the auroral blue-line emission
(427.8 nm), and the CNA data at 30 MHz was obtained from an experiment of the Kilpisjarwvi
Atmospheric Imaging Riometer Array (KAIRA), used here as a multi-beam riometer.

Figure 1 — Map of the =
area. The instruments
used in this study are
located in Kilpisjarvi,
on Finnish territory, "
just next to the border

with Norway.
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Telescope technology.

applicable to:

— multi-beam, multi-frequency

riometry;

The scientific observatory in Kilpisjarvi,
with the dome containing the all-sky
camera. The background features the
Saana fell, sacred to the Sami people.
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— interplanetary scintillation;

— radio astronomy;

— solar radio emission studies...

— High-band antenna (HBA) array
110270 MHz, 48 “tile” antennas

— Low-band antenna (LBA) array
10-80 MHz, 48 “inverted- V" aerials

It is based on the LOFAR (Low-

Frequency Array) International

KAIRA 1s a multi-purpose radar,

— bistatic incoherent scatter radar
observations (with Tromse VHF);

Ki;tpi;s jarvi Abwos
Array (KAIRA)

the
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Figure 2 — Two KAIRA = 100
beams mapped on an 150
all-sky camera image.
Beams are noted V
(vertical) and F (field- 2 2
aligned); MZ indicates 2 300

pheric Imaging Riometer

The LBA array (foreground) and the HBA array (background) on a

sunny winter day.
Photo by D. McKay.
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CNA at frequency w is given in dB by Aap = 4.6 X 107 /

In practice, 4, 1s proportional to the total electron density in the D region. The SIC model is a middle atmosphere and

SIC model simulations estimated the recombination time at 60—90 km | D-region l-dimensional model, which resolves

altitude to be of the order of 40-60 s. Approximating the N, decay as

to be of about 15%b, which 1s consistent with observations (Fig. 4, beam V).

exponential, during a ~8 s pulsation “off”” time, the CNA decrease is expected | 36 pos1t1Ye 1fms5 More detaile on the ;E'r;i,c
— 27 negative 10ns; SIC model in lerronen ".fﬁr
.| etal[2008] (an) DS

— 13 neutral species. | ~ ™ oy R ”

More detailed simulations with the SICG model reproduced ~0.1 dB oscillations
in GNA by modulating with 10 s period the precipitation flux estimated based
on incoherent scatter radar (EISCAT) measurements during the event. It was

in addition found that modulating only the low-energy part of the flux | . mic rays. Vertical transport is included, and
(lonizing down to ~100 km) only creates ~0.01 dB oscillations in CNA. SIC: can be run either in static or dynamic mode. QQ}EQT‘Q&\@Q s

Chemé;sﬁrv (SIC) Model

V2 4+ (wFwrp)?

the concentrations of:

It considers more than 400 chemical reactions,
and 1onization sources include solar UV, X-rays,
electron and proton precipitation, and galactic
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Cownclusion

The main findings from this comparison between CNA data from

KAIRA and optical data are:
— CGNA and optical data show a very high (>0.9) correlation;
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— Pulsation signatures can be seen in CNA;

— Pulsation periods are irregular, even within a same patch.
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