

Finnish Meteorological Institute

stro

Mesospheric ozone loss due to the energetic electron precipitation

Monika E. Andersson¹, Pekka T. Verronen¹, Craig J. Rodger² Mark A. Clilverd³ and Annika Seppälä¹

Abstract	Data	
Energetic electrons which originate from explosions on the surface of the Sun are stored and energized in the radiation belts. Strong acceleration and loss processes that occur during geomagnetic storms can boost the trapped population and lead to signicant loss of electrons into the atmosphere.	GOMOS Global Ozone Monitoring by Occultation of Stars	SABER Sounding of the Atmosphere using Broadband Emission Radiometry
Energetic electron precipitation (EEP) affects the neutral chemistry of the middle atmosphere at magnetic latitudes 55-65° N/S, through the enhanced production of odd hydrogen (HO _x), and odd nitrogen (NO _x). Both, HO _x and NO _x , play a major role in the ozone (O ₃) balance via participating in the ozone-destroying catalytic reactions. Recent studies have provided clear evidence of the connection between EEP and mesospheric hydroxyl (OH) [Andersson <i>et al.</i> , 2012; Verronen <i>et al.</i> 2011].	Vertical resolution: 2 km SEM: 18 % (NH) and 14% (SH) Number of profiles: 3-50	Vertical resolution: 2 km SEM: 13% (NH) and 9% (SH) Number of profiles: 4-82
Here, we combine 11 years of ozone measurements from the GOMOS/ENVISAT, SABER/TIMED, MLS/AURA and MEPED/POES instruments to show the signicance of the EEP to the mesospheric ozone variability at magnetic latitudes connected to the radiation belts. We examine 57 EEP events between 2002-2012 with daily mean 100-300 keV electron count rates (ECR) exceeding 150 counts/s in the outer radiation belt and show that strong EEP events can cause signicant ozone loss, being comparable with solar proton event (SPE).	Microwave Limb SounderVertical resolution: 5 kmSEM: 21% (NH) and 23% (SH)Number of profiles: 7-199	Medium Energy Proton Electron Detector Observation processed to give precipitating electron counts from 100-300 keV L shells: 3.0-5.6

Results

Fig. 4. Mean O₃ relative changes during 57 EEP events (ECR > 150 counts/s) at 75 km and magnetic latitudes 55-65° N/S from GOMOS, SABER and MLS. Missing data are marked by x.

Fig. 8. O₃ profiles (ONDJ mean) for years with high (red), medium (black) and low (blue) ECR in the NH (GOMOS).

Fig. 9. O_3 profiles (MJJ mean) for years with high (red), medium (black) and low (blue) ECRin the SH (SABER).

References

- Andersson et al. (2012) Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004-2009, JGR. 117, doi:10.1029/2011JD017246
 - Verronen et al. (2011) First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts, JGR. 116, doi:10.1029/2010JD014965
 - Andersson et al. (under preparation) Mesospheric ozone loss due to the energetic electron precipitation between 2002-2012.

Affiliation

¹ Earth Observation, Finnish Meteorological Institute, Helsinki, Finland ² Department of Physics, University of Otago, Dunedin, New Zealand ³ British Antarctic Survey (NERC), Cambridge, United Kingdom

Correspondence concerning this study should be addressed to: monika.andersson@fmi.fi

strong EEP events can cause signicant ozone depletion up to about 90% relative to the average values before the events, thus being comparable to the effects caused by SPE

at 75 km, in about 90% of the strongest EEP cases (daily mean 100-300 keV ECR >150 counts/s), we observe ozone decrease of 5-72% in both hemispheres

•signature of EEP can be seen in monthly mean ozone profile at altitudes between 68-80 km

• the impact of strong EEP on ozone can reach down to about 60-65 km altitude

• high-EEP years shows about 25-30% (NH) and 10-15% (SH) less mesospheric O_3 than the low-EEP years

• EEP causes mesospheric ozone reduction in the polar regions on a long time scales which can have significant implications for the dynamics of the middle atmosphere with possible connections to regional climate

Conclusions